精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
2x-y≥0
2x+y≥0
x≤3
,则z=x-2y的最小值是
-9
-9
分析:先画出满足约束条件:
2x-y≥0
2x+y≥0
x≤3
,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x-2y的最小值.
解答:解:根据题意,画出可行域与目标函数线如下图所示,
由图可知目标函数z=x-2y在点A(3,6)取最小值-9.
故答案为:-9.
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,厘清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足
(2-
3
)x+y-6+2
3
≤0
2x-y-2>0
y-
3
≥0
,则
xy
(x-y)(x+y)
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y-2|的最小值是(  )
A、5-
5
B、4-
5
C、5
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)已知实数x,y满足约束条件
x≥1
y≤1
x-y≤0
’则z=2x-y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足:
x-y+2≥0
y≥
1
2
x+1
x+y-1≥0
,则目标函数z=2x-y(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-2y≤0
x+y-3≥0
0≤y≤2
,则z=(
1
2
)x•(
1
4
)y
的最大值为
 

查看答案和解析>>

同步练习册答案