精英家教网 > 高中数学 > 题目详情
平面上有四点,连结其中的两点的一切直线中的任何两条直线不重合、不平行、不垂直,从每一点出发,向其他三点作成的一切直线作垂线,则这些垂线的交点个数最多为
A.66B.60C.52D.44
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD。

(I)证明:PQ⊥平面DCQ;
(II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形为矩形,且上的动点.
(1) 当的中点时,求证:
(2) 设,在线段上存在这样的点E,使得二面角的平面角大小为. 试确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,四边形ABCD为正方形,QA⊥平面ABCDPDQAQA=AB=PD
(I)证明:PQ⊥平面DCQ
(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是底面边长为1的正四棱柱,高。求:
⑴异面直线所成的角的大小(结果用反三角函数表示);
⑵四面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分 )如图,在等腰直角中,为垂足.沿对折,连结,使得

(1)对折后,在线段上是否存在点,使?若存在,求出的长;若不存在,说明理由; 
(2)对折后,求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.
(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知四棱锥PABCD的底面是直角梯形,∠ABC=∠BCD=90oABBCPBPC=2CD=2,侧面PBC⊥底面ABCDOBC的中点,AOBDE.

(1)求证:PABD
(2)求二面角PDCB的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有三个球和一个正方体,第一个球与正方体各个面相切,第二个球与正方体各条棱相切,第三个球过正方体个顶点,则这三个球的表面积之比为                     

查看答案和解析>>

同步练习册答案