精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

在边长为的正方形ABCD中,EF分别为BCCD的中点,MN分别为ABCF的中点,现沿AEAFEF折叠,使BCD三点重合于B,构成一个三棱锥(如图所示).

   

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;

(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;

(Ⅲ)求多面体E-AFNM的体积.

 

【答案】

(Ⅰ)因翻折后BCD重合,所以MN应是的一条中位线; 详见解析。

(Ⅱ)当点与点B重合时,此时

(Ⅲ)

【解析】本试题是一个折叠图的运用。折叠图要关注不变量,然后利用空间的线面的位置关系判定线面平行和线面垂直问题,然后求解锥体的体积的运算的综合运用。

(1)因翻折后BCD重合,所以MN应是的一条中位线,且,利用线面平行的判定定理得到结论。

(2)假设存在点G点使得AB垂直于平面EFG,那么先猜想,然后利用猜想证明得到结论。

(3)要求锥体的体积,要分析已知中的高,即线面垂直的性质定理的运用。

解:(Ⅰ)因翻折后BCD重合,所以MN应是的一条中位线,如图所示.

                       ………………2分

证明如下: .…4分

(Ⅱ)存在点使得,此时

      因为EBF

      是线段上一点,且,

      ∴ 当点与点B重合时,此时           ………………8分

(Ⅲ)因为

,            ………………………………………9分

                     ………………………………11分

.                          …………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案