精英家教网 > 高中数学 > 题目详情
若y=log3a-1x在(0,+∞)内为减函数,且y=(
1
2a
)
x
为增函数,则a的取值范围是(  )
分析:分别根据对数函数和指数函数的单调性建立不等式关系即可求出a的取值范围.
解答:解:∵y=log3a-1x在(0,+∞)内为减函数,
∴0<3a-1<1,即1<3a<2,解得
1
3
<a<
2
3

∵y=(
1
2a
)
x
为增函数,
1
2a
>1

解得0<a<
1
2

综上
1
3
<a<
2
3
0<a<
1
2
,解得
1
3
<a<
1
2

即a的取值范围是(
1
3
1
2
).
故选:D.
点评:本题主要考查指数函数和对数函数的图象和性质,要求熟练掌握函数单调性与a的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法:
(1)不等式(x-1)
x2-x-2
0的解集为[2,+∞);
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”成立的必要不充分条件;
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数
y=sin(-2x+
π
4
)(x∈R)
的图象;
(4)函数f(x)=log
1
2
(x2+ax+2)
的值域为R,则实数a的取值范围是(-2
2
,2
2
).
其中正确的说法有(  )
A、.1个B、2个
C、3个D、.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
(1)命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分条件
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)(x∈R)
的图象.
(4)若四边形ABCD是平行四边形,则
AB
=
DC
BC
=
DA

(5)两个非零向量
a
b
互相垂直,则|
a
| 2+|
b
|2=(
a
+
b
)2

其中正确说法个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log
3
(x+a)的图象上.
(1)求实数a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有两个不等实根时,求b的取值范围.
(B类)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求证:f(x)为奇函数;
(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四种说法:
(1)命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分条件
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)(x∈R)
的图象.
(4)若四边形ABCD是平行四边形,则
AB
=
DC
BC
=
DA

(5)两个非零向量
a
b
互相垂直,则|
a
| 2+|
b
|2=(
a
+
b
)2

其中正确说法个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案