精英家教网 > 高中数学 > 题目详情
2.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,$\overrightarrow{a}$=(y,m+x),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 由向量知识易得目标函数为m=2y-x,由约束条件作出可行域,化目标函数为直线方程的斜截式,平移直线y=$\frac{1}{2}$x可得结论.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$作出可行域如图,

∵向量$\overrightarrow{a}$=(y,m+x),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=2y-(m+x)=0,可得目标函数为m=2y-x,
即y=$\frac{1}{2}x$$\frac{1}{2}$m,平移直线y=$\frac{1}{2}x$可知,当直线经过点A时,m取最小值,
联立$\left\{\begin{array}{l}{x+2y-3=0}\\{2x+y-3=0}\end{array}\right.$,解得A(1,1).
∴m的最小值为2×1-1=1.
故选:B.

点评 本题考查简单线性规划,考查向量垂直的坐标运算,体现了数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长,虚轴长,焦距依次成等差数列,则该双曲线的渐近线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tanα,tanβ是方程3x2+5x-7=0的两根,求下列各式的值:
(1)tan(α+β);
(2)$\frac{sin(α+β)}{cos(α-β)}$;
(3)cos2(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果lg4×lg8=lg64×lgm,那么m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在($\frac{x}{\sqrt{y}}$-$\frac{y}{\sqrt{x}}$)6的展开式中,x3的系数为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=1,an+1=2an+1.
(1)求证:{an+1}是等比数列;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各式中不能化简为$\overrightarrow{PQ}$的是(  )
A.$\overrightarrow{AB}$+($\overrightarrow{PA}$+$\overrightarrow{BQ}$)B.($\overrightarrow{AB}$+$\overrightarrow{PC}$)+($\overrightarrow{BA}$-$\overrightarrow{QC}$)C.$\overrightarrow{QC}$-$\overrightarrow{QP}$+$\overrightarrow{CQ}$D.$\overrightarrow{PA}$+$\overrightarrow{AB}$-$\overrightarrow{BQ}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{sin(α-π)+cos(π-α)}{sin(π+α)-cos(π+α)}$=3,则tan(π+α)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,acosC+$\frac{1}{2}$c=b.
(1)求∠A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

同步练习册答案