精英家教网 > 高中数学 > 题目详情
若从集合{,3,4 }中随机抽取一个数记为a,从集合{-1,1,-2,2}中随机抽取一个数记为b,则函数f(x)=ax+b(a>0,a≠1)的图象经过第三象限的概率是   
【答案】分析:根据题意,分析可得a、b可能的情况数目,由分步计数原理可得f(x)=ax+b的情况数目,由指数函数的图象函数性质分析可得函数f(x)=ax+b的图象经过第三象限的情况数目,由等可能事件的概率公式,计算可得答案.
解答:解:根据题意,从集合{,3,4 }中随机抽取一个数记为a,则a有4种情况,
同理,从集合{-1,1,-2,2}中随机抽取一个数记为b,则b有4种情况,
则f(x)=ax+b的情况有4×4=16,
函数f(x)=ax+b的图象经过第三象限,有①当a=3、b=-1时,②当a=3、b=-2时,③当a=4、b=-1时,④当a=4、b=-2时,⑤当a=、b=-2时,⑥当a=、b=-2时,共6种情况,
则函数的图象经过第三象限的概率为=
故答案为
点评:本题考查等可能事件的概率计算与指数函数图象的性质与变换,关键是关键指数函数图象的性质的分析得到函数图象过第三象限的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图的程序可产生一系列随机数,其工作原理如下:
①从集合D中随机抽取1个数作为自变量x输入;
②从函数f(x)与g(x)中随机选择一个作为H(x)进行计算;
③输出函数值y.若D={1,2,3,4,5},f(x)=3x+1,g(x)=x2
(1)求y=4的概率;
(2)将程序运行一次,求输出的结果是奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.设关于x的二次函数f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1时,从集合M取一个数作为a的值,求方程f(x)=0有解的概率;
(Ⅱ)若从集合M和N中各取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图的程序可产生一系列随机数,其工作原理如下:
①从集合D中随机抽取1个数作为自变量x输入;
②从函数f(x)与g(x)中随机选择一个作为H(x)进行计算;
③输出函数值y.
若D={1,2,3,4,5},f(x)=3x+1,g(x)=x2
(1)求y=4的概率;
(2)将程序运行4次,求恰好有2次的输出结果是奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)已知集合A={-1,0,1,2,3,2
2
+1},集合B={1,2,3,4,5,9},映射f:A→B的对应法则为f:x→y=x2-2x+2,设集合M={m∈B|m在集合A中存在原象},集合N={n∈B|n在集合A中不存在原象},若从集合M、N中各取一个元素组成没有重复数字的两位数的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)若从集合{
1
3
1
4
,3,4 }中随机抽取一个数记为a,从集合{-1,1,-2,2}中随机抽取一个数记为b,则函数f(x)=ax+b(a>0,a≠1)的图象经过第三象限的概率是
3
8
3
8

查看答案和解析>>

同步练习册答案