【题目】已知函数在区间上的最大值为4,最小值为1.
(1)求实数、的值;
(2)记,若在上是单调函数,求实数的取值范围;
(3)对于函数,用,1,2,,,将区间任意划分成个小区间,若存在常数,使得和式对任意的划分恒成立,则称函数为上的有界变差函数.记,试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由.
(参考公式:
【答案】(1),;(2)或;(3)是,6.
【解析】
(1)由已知中在区间的最大值为4,最小值为1,结合函数的单调性及最值,构造出关于,的方程组,解得,的值;
(2)由的解析式可得的解析式,讨论的符号结合对勾函数的图象和单调性可得的范围;
(3)根据有界变差函数的定义,我们先将区间进行划分,进而判断是否恒成立,进而得到结论.
(1)函数,因为,
所以在区间上是增函数,
又函数故在区间,上的最大值为4,最小值为1,
,即,
解得,;
(2)由已知可得,
,
若在上是单调函数,
若,即,由两个增函数的和还是增函数,易得函数在递增;
若,函数为对勾函数,结合图象可知:在递增;
或,解得:或.
综上所述:或.
(3)函数为上的有界变差函数.
因为函数为递增,递减,上的单调递增函数,
且对任意划分,
有
恒成立,①
且对任意划分,
有,
恒成立,②
且对任意划分,
有,
恒成立,③
由①②③可得,
存在常数,使得恒成立,的最小值为6.
科目:高中数学 来源: 题型:
【题目】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(I)估计顾客同时购买乙和丙的概率;
(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;
(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin.
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= – (k∈Z)
B.x= + (k∈Z)
C.x= – (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已成椭圆 的左右顶点分别为 ,上下顶点分别为 ,左右焦点分别为 ,其中长轴长为4,且圆 为菱形 的内切圆.
(1)求椭圆 的方程;
(2)点 为 轴正半轴上一点,过点 作椭圆 的切线 ,记右焦点 在 上的射影为 ,若 的面积不小于 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),其坐标满足条件:|x1x2+y1y2|﹣ 的最大值为0,则称f(x)为“柯西函数”, 则下列函数:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)= .
其中为“柯西函数”的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点 (Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若直线PC与平面PAD所成角为45°,求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com