精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上的最大值为4,最小值为1

1)求实数的值;

2)记,若上是单调函数,求实数的取值范围;

3)对于函数,用12将区间任意划分成个小区间,若存在常数,使得和式对任意的划分恒成立,则称函数上的有界变差函数.记,试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由.

(参考公式:

【答案】1;(2;(3)是,6.

【解析】

1)由已知中在区间的最大值为4,最小值为1,结合函数的单调性及最值,构造出关于的方程组,解得的值;

2)由的解析式可得的解析式,讨论的符号结合对勾函数的图象和单调性可得的范围;

3)根据有界变差函数的定义,我们先将区间进行划分,进而判断是否恒成立,进而得到结论.

1函数,因为

所以在区间上是增函数,

函数故在区间上的最大值为4,最小值为1

,即

解得

2)由已知可得

上是单调函数,

,即,由两个增函数的和还是增函数,易得函数递增;

,函数为对勾函数,结合图象可知:在递增;

,解得:.

综上所述:.

3)函数上的有界变差函数.

因为函数递增,递减,上的单调递增函数,

且对任意划分

恒成立,①

且对任意划分

恒成立,②

且对任意划分

恒成立,③

由①②③可得

存在常数,使得恒成立,的最小值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(I)估计顾客同时购买乙和丙的概率;
(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;
(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已成椭圆 的左右顶点分别为 ,上下顶点分别为 ,左右焦点分别为 ,其中长轴长为4,且圆 为菱形 的内切圆.
(1)求椭圆 的方程;
(2)点 轴正半轴上一点,过点 作椭圆 的切线 ,记右焦点 上的射影为 ,若 的面积不小于 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)在其图像上存在不同的两点A(x1 , y1),B(x2 , y2),其坐标满足条件:|x1x2+y1y2|﹣ 的最大值为0,则称f(x)为“柯西函数”, 则下列函数:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)=
其中为“柯西函数”的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点 (Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若直线PC与平面PAD所成角为45°,求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数f(x)有最大值M,则M的取值范围是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( ]

查看答案和解析>>

同步练习册答案