【题目】如图,在四棱锥中,,,,平面平面,.和分别是和的中点.
求证:(I)底面.
(II)平面平面.
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)直接根据面面垂直性质定理得线面垂直(2)先根据线面垂直性质定理得,而由三角形中位线性质得,所以,再利用平几知识得,根据线面垂直判定定理得线面垂直,最后再根据面面垂直判定定理得结论
试题解析:(I)证明:∵平面平面,平面平面,
且,平面,
∴底面.
(II)证明:∵,,是的中点,
∴,
∴为平行四边形,
∴,
又∵,
∴,,
由()知,底面,
∴,
∴平面,
∴,
∵,分别是和的中点,
∴,
∴,
∴平面,
∴平面平面.
点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.
(1)证明线面、面面平行,需转化为证明线线平行.
(2)证明线面垂直,需转化为证明线线垂直.
(3)证明线线垂直,需转化为证明线面垂直.
科目:高中数学 来源: 题型:
【题目】近几年电子商务蓬勃发展,在2017年的“年货节”期间,一网络购物平台推销了三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对三种商品的抢购成功的概率分别为 ,已知三件商品都被抢购成功的概率为,至少有一件商品被抢购成功的概率为 .
(1)求的值;
(2)若购物平台准备对抢购成功的三件商品进行优惠减免活动, 商品抢购成功减免百元, 商品抢购成功减免百元, 商品抢购成功减免百元,求该名网购者获得减免的总金额(单位:百元)的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.
(1)试求选出种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是 ,则sin2θ﹣cos2θ的值等于( )
A.1
B.﹣
C.
D.﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于下列命题
①函数y=tanx在第一象限是增函数;
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一个对称中心是( ,0);
④函数y=sin(x+ )在闭区间[﹣ , ]上是增函数;
写出所有正确的命题的题号: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈[﹣ , ]时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com