精英家教网 > 高中数学 > 题目详情

在正四棱锥P-ABCD中,PA=AB,E、N、F分别为棱AB、棱BC和棱PC的中点,则异面直线PE与FN所成角为


  1. A.
    arccos数学公式
  2. B.
    30°
  3. C.
    arccos数学公式
  4. D.
    60°
B
分析:求两异面直线的夹角的方法有线段变化平移与线段不变化平移,平移线段后组成三角形,再利用解三角形的方法求解两异面直线的夹角的三角函数值.
解答:解:如图,∵N、F分别为棱BC和棱PC的中点,
∴FN∥PB,
∴∠BPE为异面直线PE与FN所成角,
在正四棱锥P-ABCD中,PA=PB=AB.
三角形PAB是正三角形,
从而在△BPA中,由于E为棱AB的中点,
∴∠BPE=∠BPA==30°,
故选B.
点评:本小题主要考查棱锥的几何特征、异面直线及其所成的角、解三角形等基础知识,考查运算求解能力,考查空间想象能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在正三棱锥P-ABC中,D、E分别是AB、BC的中点,有下列四个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥PABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是(  )

A.OD∥平面PBC                       B.ODPA

C.ODAC                                 D.PA=2OD

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,在正三棱锥PABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是

A.OD∥平面PBC                                     B.ODPA

C.ODAC                                               D.PA=2OD

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一下学期第一次阶段考试理科数学 题型:填空题

在正三棱锥P—ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:

①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.

其中正确结论的序号是                  .

 

查看答案和解析>>

同步练习册答案