(14分)已知数列中,,()
(1)求数列的通项公式;
(2)设,数列的前项和为,求证: .
科目:高中数学 来源: 题型:解答题
已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)求函数的最小值;
(3)设表示数列的前项和。试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列满足,数列满足,
数列满足.
(1)若,证明数列为等比数列;
(2)在(1)的条件下,求数列的通项公式;
(3)若,证明数列的前项和满足。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知数列是公差为正的等差数列,其前项和为,点在抛物线上;各项都为正数的等比数列满足.
(1)求数列,的通项公式;
(2)记,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)设数列的前项和为.已知,,.
(1)写出的值,并求数列的通项公式;
(2)记为数列的前项和,求;
(3)若数列满足,,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设数列的前项和为.已知,,.
(Ⅰ)写出的值,并求数列的通项公式;
(Ⅱ)记为数列的前项和,求;
(Ⅲ)若数列满足,,求数列的通项公式。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)
(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列的前n项和,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)某家庭为小孩买教育保险,小孩在出生的第一年父母就交纳保险金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的保险金数目为a1,a2,…是一个公差为d的等差数列,与此同时保险公司给予优惠的利息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的保险金就变为a1(1+r)n-1,第二年所交纳的保险金就变为a2(1+r)n-2,…,以Tn表示到第n年末所累计的保险金总额。
(1)写出Tn与Tn+1的递推关系(n≥1);
(2)若a1=1,d=0.1,求{Tn}的通项公式。(用r表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com