精英家教网 > 高中数学 > 题目详情
已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围
(1);(2)当时,函数在区间上单调递增;(3)直线的斜率的取值范围是 

试题分析:(1)求导得,因为函数处取得极值2,
所以,由此解得,从而得的解析式;(2)由(1)知,由此可得的单调增区间是[-1,1],要使得函数在区间上单调递增,则(3)由题意及导数的几何意义知,求直线的斜率的取值范围就是求函数的导数的取值范围
试题解析:(1)因为                  (2分)
而函数处取得极值2,
所以, 即 解得 
所以即为所求                  (4分)
(2)由(1)知
得:
的增减性如下表:

(-∞,-1)
(-1,1)
(1,+∞)





递减
递增
递减
可知,的单调增区间是[-1,1],                   (6分)
所以
所以当时,函数在区间上单调递增。  (9分)
(3)由条件知,过的图象上一点P的切线的斜率为:
    (11分)
,则
此时,的图象性质知:
时,
时,
所以,直线的斜率的取值范围是         (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,
(1)求函数上的最小值;
(2)若存在是自然对数的底数,,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数)
(1)求的最小值;
(2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-a2x2+ax(aR).
(l)当a=1时,证明:函数f(x)只有一个零点;
(2)若函数f(x)在区间(1,十)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)判断曲线在点(1,)处的切线与曲线的公共点个数;
(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

8. 设函数fx)在R上可导,其导函数为f ′x),且函数fx)在x=﹣2处取得极小值,则函数y=xf ′x)的图象可能是( )

A                    B                    C                  D

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数是函数的导函数.
(1)若,求的单调减区间;
(2)若对任意,都有,求实数的取值范围;
(3)在第(2)问求出的实数的范围内,若存在一个与有关的负数,使得对任意恒成立,求的最小值及相应的值.

查看答案和解析>>

同步练习册答案