精英家教网 > 高中数学 > 题目详情
已知函数,
(1)求函数上的最小值;
(2)若存在是自然对数的底数,,使不等式成立,求实数的取值范围.
(1)当;当(2)

试题分析:(1)求函数在给定区间上的最值问题,先求的根,再跟定义域比较,若根在区间外或端点处,则函数在给定区间上单调,利用单调性求最值;若根是内点,则分段考虑导函数符号,并画出函数大致图像,借助图象直观求出最值,该题中的根为,当时,函数单调,当时,分段考虑导函数符号,进而求解;(2)由题意知,问题可转化为上有解,利用参变分离法得,有解,进而转化为求的最大值问题处理.
试题解析:(1)           1分
为减函数,在为增函数
①当时,为减函数,在为增函数,     4分
②当时,为增函数,            7分
(2)由题意可知,上有解,即上有解
,即            9分

为减函数,在为增函数,则在为减函数,在为增函数      13分

               15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在定义域内的函数,若对任意的都有,则称函数为“妈祖函数”,否则称“非妈祖函数”.试问函数,()是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求的最大值;
(2)求证:恒成立;
(3)求证:.(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中),,已知它们在处有相同的切线.
(1)求函数的解析式;
(2)求函数上的最小值;
(3)判断函数零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的导数是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的两个可导函数,若,满足,则满足
A.B.为常数函数
C.D.为常数函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=x2-2x-4ln x,则f′(x)>0的解集为( ).
A.(0,+∞)B.(-1,0)∪(2,+∞)
C.(2,+∞)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在用土计算机进行的数学模拟实验中,一种应用微生物跑步参加化学反应,其物理速度与时间的关系是,则(    )
A.有最小值B.有最大值
C.有最小值D.有最大值

查看答案和解析>>

同步练习册答案