精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{x^3}-3x-1\\ 1\end{array}\right.\begin{array}{l}{(x≥1)}\\{(x<1)}\end{array}$,则满足不等式f(2x2)<f(1-x)的x的取值范围是{x|$\frac{\sqrt{2}}{2}$≤x<1 或x<-1}.

分析 由题意可得f(x)在[1,+∞)上单调递增,f(1)=-3,f(2)=1,由此结合f(x)的图象可得$\left\{\begin{array}{l}{1-x<1}\\{{1≤2x}^{2}<2}\end{array}\right.$,或$\left\{\begin{array}{l}{1-x≥1}\\{1-x<{2x}^{2}}\end{array}\right.$,由此求得x的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x^3}-3x-1\\ 1\end{array}\right.\begin{array}{l}{(x≥1)}\\{(x<1)}\end{array}$,
故当x≥1时,f′(x)=3x2-3≥0,
故f(x)在[1,+∞)上单调递增,f(1)=-3,f(2)=1.
故函数f(x)的图象如图所示:
则由不等式f(2x2)<f(1-x),
可得$\left\{\begin{array}{l}{1-x<1}\\{{1≤2x}^{2}<2}\end{array}\right.$,或$\left\{\begin{array}{l}{1-x≥1}\\{1-x<{2x}^{2}}\end{array}\right.$.
求得$\frac{\sqrt{2}}{2}$≤x<1 或x<-1,
故要求的x的取值范围为{x|$\frac{\sqrt{2}}{2}$≤x<1 或x<-1}.

点评 本题主要考查分段函数的应用,函数的单调性的应用,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知一组数据为10,10,x,8,其中位数与平均数相等,则这组数据的中位数为9或10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.微信是现代生活进行信息交流的重要工具,据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中$\frac{2}{3}$是青年人.
(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表;
青年人中年人合计
经常使用微信
不经常使用微信
合计
(Ⅱ)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
P(K2≥k)0.0100.001
k6.63510.828
附:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线2x+3y-5=0关于直线y=x对称的直线方程为(  )
A.3x+2y-5=0B.2x-3y-5=0C.3x+2y+5=0D.3x-2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=-xcosx的部分图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在空间直角坐标系中,对其中任何一向量$\overrightarrow{X}$=(x1,x2,x3),定义范数||$\overrightarrow{X}$||,它满足以下性质:
(1)||$\overrightarrow{X}$||≥0,当且仅当$\overrightarrow{X}$为零向量时,不等式取等号;
(2)对任意的实数λ,||λ$\overrightarrow{X}$||=|λ|•||$\overrightarrow{X}$||(注:此处点乘号为普通的乘号).
(3)||$\overrightarrow{X}$||+||$\overrightarrow{Y}$||≥||$\overrightarrow{X}$+$\overrightarrow{Y}$||.
试求解以下问题:
在平面直角坐标系中,有向量$\overrightarrow{X}$=(x1,x2),下面给出的几个表达式中,可能表示向量$\overrightarrow{X}$的范数的是④.(把所有正确答案的序号都填上)
①$\sqrt{x_1^2}+2x_2^2$②$\sqrt{2x_1^2-x_2^2}$③$\sqrt{x_1^2+x_2^2+2}$④$\sqrt{x_1^2+x_2^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校对高一新生进行军训,高一(1)班学生54人,高一(2)班学生42人,现在要用分层抽样的方法,从两个班中抽出部分学生参加4×4方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是9,7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在边长为a的菱形ABCD中,PC⊥面ABCD,E,F是PA和AB的中点.
(1)求证:EF∥平面PBC;
(2)求BD⊥面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设某几何体的三视图如图所示(尺寸的长度单位为m),则该几何体的体积为(  )
A.12m3B.$\frac{8}{3}{m^3}$C.4m3D.8m3

查看答案和解析>>

同步练习册答案