精英家教网 > 高中数学 > 题目详情

已知椭圆上的点到左右两焦点的距离之和为,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.

(1);(2)

解析试题分析:(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.
试题解析:(1),∴
,∴,∴
椭圆的标准方程为
(2)已知,设直线的方程为-,
联立直线与椭圆的方程,化简得:

的中点坐标为
①当时,的中垂线方程为
,∴点的中垂线上,将点的坐标代入直线方程得:
,即
解得 .
②当时,的中垂线方程为,满足题意,
∴斜率的取值为.
考点:1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆:的左焦点为,且过点.

(1)求椭圆的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足.
①若,求的值;
②若M、N分别为椭圆E的左、右顶点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,之间满足什么关系;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知点,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(Ⅰ)求此椭圆的离心率;
(Ⅱ)求证:以线段为直径的圆过点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).

(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知过点的椭圆的右焦点为,过焦点且与轴不重合的直线与椭圆交于两点,点关于坐标原点的对称点为,直线分别交椭圆的右准线两点.

(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记两点的纵坐标分别为,试问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆C经过点
(1)求椭圆C的标准方程;
(2)若线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.

查看答案和解析>>

同步练习册答案