已知椭圆:的左焦点为,且过点.
(1)求椭圆的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足.
①若,求的值;
②若M、N分别为椭圆E的左、右顶点,证明:
(1) ;(2)参考解析
解析试题分析:(1)因为由椭圆:的左焦点为,即.由点到两焦点的距离和可求出椭圆的长轴.从而可以求出椭圆的方程.
(2)(1)通过假设直线的方程联立椭圆方程消去y可得一个一元二次方程,由韦达定理即可求出直线的斜率k的值,从而解出A,B两点的坐标,即可得结论.(2)分别求两直线的斜率和,利用韦达定理得到的关系式即可证明斜率和为零.即可得到结论.
试题解析:(1)因为焦点为, C=1,又椭圆过,
取椭圆的右焦点,,由得,
所以椭圆E的方程为
(2)①设,,
显然直线斜率存在,设直线方程为
由得:
得,,
,,
,符合,由对称性不妨设,
解得,
②若,则直线的方程为,
将代入得, 不满足题意,同理
,,
考点:1.椭圆的性质.2.直线与椭圆的位置关系.3.韦达定理.4.几何问题构建代数方法解决.
科目:高中数学 来源: 题型:解答题
(13分)已知圆O:x2+y2=3的半径等于椭圆E:=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线l:y=x-的距离为-,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).
(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的与轴交于点,不同的两点在上,且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为.
(1)求椭圆的标准方程;
(2)点为椭圆上除长轴端点外的任一点,直线,与椭圆的右准线分别交于点,.
①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;
②已知常数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线于、两点,过点和原点的直线交直线于点,求证:直线平行于轴.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点.
(1)求抛物线的方程;
(2)当直线,的倾斜角之和为时,证明直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com