已知椭圆
的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
(1)
;(2)
(3)![]()
解析试题分析:(1)双曲线的离心率为
,所以椭圆的离心率为
。根据题意原点到直线
的距离为
,又因为
可解得
。(2)由题意知
即点
到直线
,和到点
的距离相等,根据椭圆的定义可知点
的轨迹是以
为焦点以直线
为准线的抛物线。(3)由
的方程为
知
设
,根据
得出
的关系,用两点间距离求
,再用配方法求最值。
试题解析:解(1)易知:双曲线的离心率为
,
,
即
, 1分
又由题意知:
, 2分
椭圆
的方程为
. 3分
(2)![]()
动点
到定直线
的距离等于它到定点
的距离 5分
动点
的轨迹
是以
为准线,
为焦点的抛物线, 6分
点
的轨迹
的方程为
. 7分
(3)由(2)知:
,设
,
则
, 8分![]()
, 9分
由
,左式可化简为:
, 10分
,
当且仅当
,即
时取等号, 11分
又
,
当
,即
时,
, 13分
故<
科目:高中数学 来源: 题型:解答题
抛物线
的方程为
,过抛物线
上一点
(
)作斜率为
的两条直线分别交抛物线
于
两点(
三点互不相同),且满足
(
且
).
(1)求抛物线
的焦点坐标和准线方程;
(2)设直线
上一点
,满足
,证明线段
的中点在
轴上;
(3)当
=1时,若点
的坐标为
,求
为钝角时点
的纵坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知对于任意实数k,直线(
k+1)x+(k-
)y-(3k+
)=0恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+
.
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)上任一点P到两个焦点的距离的和为2
,P与椭圆长轴两顶点连线的斜率之积为-
.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).
(1)若
=
(O为坐标原点),求|y1-y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1上任一点P,由点P向x轴作垂线PQ,垂足为Q,设点M在PQ上,且
=2
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点
且平行于x轴的直线上一动点,且满足
=
+
(O为原点),且四边形OANB为矩形,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
=1(a>b>0)的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
+
=8,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,焦距为
的椭圆
的两个顶点分别为
和
,且
与n
,
共线.![]()
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
有两个不同的交
点
和
,且原点
总在以
为直径的圆的内部,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的左焦点为
,且过点
.![]()
(1)求椭圆
的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足
.
①若
,求
的值;
②若M、N分别为椭圆E的左、右顶点,证明: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的方程为
,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线
与
能否垂直?若能,
之间满足什么关系;若不能,说明理由;
(2)已知
为
的中点,且
点在椭圆上.若
,求椭圆的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com