设椭圆
=1(a>b>0)的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
+
=8,求k的值.
科目:高中数学 来源: 题型:解答题
已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录如下:
、
、
、
.
(1)经判断点
,
在抛物线
上,试求出
的标准方程;
(2)求抛物线
的焦点
的坐标并求出椭圆
的离心率;
(3)过
的焦点
直线与椭圆
交不同两点
且满足
,试求出直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1:
+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,
=2
,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆M:
=1(a>
)的右焦点为F1,直线l:x=
与x轴交于点A,若
1=2
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求
·
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
分别是椭圆
的左,右顶点,点
在椭圆
上,且直线
与直线
的斜率之积为
.![]()
(1)求椭圆
的标准方程;
(2)点
为椭圆
上除长轴端点外的任一点,直线
,
与椭圆的右准线分别交于点
,
.
①在
轴上是否存在一个定点
,使得
?若存在,求点
的坐标;若不存在,说明理由;
②已知常数
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com