已知椭圆![]()
的离心率为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
的交点为
,求弦长
.
科目:高中数学 来源: 题型:解答题
设椭圆
=1(a>b>0)的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
+
=8,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点
,曲线C是使
为定值的点
的轨迹,曲线
过点
.
(1)求曲线
的方程;
(2)直线
过点
,且与曲线
交于
,当
的面积取得最大值时,求直线
的方程;
(3)设点
是曲线
上除长轴端点外的任一点,连接
、
,设
的角平分线
交曲线
的长轴于点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.![]()
⑴求椭圆
与椭圆
的方程;
⑵设点
为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点
在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的方程为
,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线
与
能否垂直?若能,
之间满足什么关系;若不能,说明理由;
(2)已知
为
的中点,且
点在椭圆上.若
,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知点
和
,过点
的直线
与过点
的直线
相交于点
,设直线
的斜率为
,直线
的斜率为
,如果
,求点
的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在
中,
的外角平分线
与边
的延长线相交于点
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(Ⅰ)求此椭圆的离心率;
(Ⅱ)求证:以线段
为直径的圆过点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.![]()
(1)求抛物线
的方程;
(2)当
的角平分线垂直
轴时,求直线
的斜率;
(3)若直线
在
轴上的截距为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com