精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.

(1);(2).

解析试题分析:(1)利用直线与圆相切,先求出的值,再结合椭圆的离心率求出的值,最终确定椭圆的方程;(2)先设点,联立直线与椭圆的方程,消去可得,然后根据二次方程根与系数的关系得到,最后利用弦长计算公式求解即可.
试题解析:(1)由直线与圆相切得 2分
             4分
∴椭圆方程为                   6分
(2)    8分
,设交点坐标分别为   9分
                   11分
从而
所以弦长                      14分.
考点:1.直线与圆的位置关系;2.椭圆的标准方程及其几何性质;3.直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设AB分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于CD两点.若=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点,曲线C是使为定值的点的轨迹,曲线过点.
(1)求曲线的方程;
(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;
(3)设点是曲线上除长轴端点外的任一点,连接,设的角平分线交曲线的长轴于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,之间满足什么关系;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知点,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(Ⅰ)求此椭圆的离心率;
(Ⅱ)求证:以线段为直径的圆过点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.

查看答案和解析>>

同步练习册答案