精英家教网 > 高中数学 > 题目详情

已知定点,曲线C是使为定值的点的轨迹,曲线过点.
(1)求曲线的方程;
(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;
(3)设点是曲线上除长轴端点外的任一点,连接,设的角平分线交曲线的长轴于点,求的取值范围.

(1);(2);(3).

解析试题分析:(1)依题意并结合椭圆的定义,先判断出曲线的轨迹是以原点为中心,以为焦点的椭圆,从而得出椭圆中参数的值,由计算出参数的值,最后由计算出的取值即可得到曲线的方程;(2)设点,联立直线与椭圆的方程,消去得到,从而由二次方程根与系数的关系得到,再由弦长公式计算出,再计算出点到直线的距离,由公式计算出三角形的面积(含参数),结合基本不等式可确定面积最大时的值,从而可确定直线方程;(3)设,由角平分线可得=,化简并代入坐标进行运算,即可得出,然后根据,可确定的取值范围.
试题解析:(1)    2分
曲线C为以原点为中心,为焦点的椭圆
设其长半轴为,短半轴为,半焦距为,则
曲线C的方程为                                4分
(2)设直线的为代入椭圆方程,得
,计算并判断得
,得

到直线的距离,设,则

时,面积最大
的面积取得最大值时,直线l的方程为:
  9分
(3)由题意可知:=,=        10分
其中,将向量坐标代入并化简得:
m(,                12分
因为,所以,                        13分
,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为

(1)求椭圆的标准方程;
(2)点为椭圆上除长轴端点外的任一点,直线与椭圆的右准线分别交于点
①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;
②已知常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线lxy=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MAMB交椭圆于AB两点,设两直线的斜率分别为k1k2,且k1k2=4,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线两点,过点和原点的直线交直线于点,求证:直线平行于轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求之间满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点轴上,抛物线上的点的距离为2,且的横坐标为1.直线与抛物线交于两点.
(1)求抛物线的方程;
(2)当直线的倾斜角之和为时,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两个焦点是(0,-)和(0,),并且经过点,抛物线E的顶点在坐标原点,焦点F恰好是椭圆C的右顶点.
(Ⅰ)求椭圆C和抛物线E的标准方程;
(Ⅱ)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求的最小值.

查看答案和解析>>

同步练习册答案