如图,焦距为的椭圆的两个顶点分别为和,且与n,共线.
(1)求椭圆的标准方程;
(2)若直线与椭圆有两个不同的交
点和,且原点总在以为直径的圆的内部,求实数的取值范围.
(1) ;(2)
解析试题分析:(1)根据椭圆方程写出顶点的坐标,然后写出的坐标,利用两向量共线的充要条件:,得与的关系,结合,解出与,求出椭圆的方程;(2)设直线,与椭圆有两个不同的交点和,设,将直线方程代入椭圆方程,消去,得到关于的方程,由两个不同交点,,并且得到与,原点总在以为直径的圆的内部,为钝角,即,整理,代入根与系数的关系,比较得出的取值范围.
试题解析:(1)解:设椭圆的标准方程为,由已知得,,,,所以,,
因为与n,共线,所以, 2分
由,解得,,
所以椭圆的标准方程为. 4分
(2)解:设,,,,把直线方程代入椭圆方程,
消去,得,
所以,, 8分
,即 (*) 9分
因为原点总在以为直径的圆的内部,
所以,即, 10分
又,
由得, 13分
依题意且满足(*)得
故实数的取值范围是
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长。与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点。
(1)求、的方程;
(2)求证:。
(3)记的面积分别为,若,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的与轴交于点,不同的两点在上,且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点P(0,-1)是椭圆C1:=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为.
(1)求椭圆的标准方程;
(2)点为椭圆上除长轴端点外的任一点,直线,与椭圆的右准线分别交于点,.
①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;
②已知常数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线于、两点,过点和原点的直线交直线于点,求证:直线平行于轴.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com