已知椭圆
=1上任一点P,由点P向x轴作垂线PQ,垂足为Q,设点M在PQ上,且
=2
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点
且平行于x轴的直线上一动点,且满足
=
+
(O为原点),且四边形OANB为矩形,求直线l的方程.
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心为原点
,离心率
,其一个焦点在抛物线![]()
的准线上,若抛物线
与直线
相切.
(1)求该椭圆的标准方程;
(2)当点
在椭圆
上运动时,设动点
的运动轨迹为
.若点
满足:
,其中
是
上的点,直线
与
的斜率之积为
,试说明:是否存在两个定点
,使得
为定值?若存在,求
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点
和定直线
,动点与定点
的距离等于点
到定直线
的距离,记动点
的轨迹为曲线
.
(1)求曲线
的方程.
(2)若以
为圆心的圆与曲线
交于
、
不同两点,且线段
是此圆的直径时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
。![]()
(1)求
、
的方程;
(2)求证:
。
(3)记
的面积分别为
,若
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-
=1.
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为A、B,右焦点为F,直线l为椭圆的右准线,N为l上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AM=MN,求∠AMB的余弦值;
(3)设过A、F、N三点的圆与y轴交于P、Q两点,当线段PQ的中点为(0,9)时,求这个圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点P(0,-1)是椭圆C1:
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.![]()
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为
的直线m交双曲线于M、N两点,期中
,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角
的表达式。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com