精英家教网 > 高中数学 > 题目详情

已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

(1)=1(2)-(3)x2y2+2x-18y-8=0

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过点的直线交椭圆两点,是椭圆的一个顶点,若线段的中点恰为点.
(1)求直线的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线轴右侧,上每一点到点的距离减去它到轴距离的差都是1.
(1)求曲线的方程;
(2)设直线交曲线两点,线段的中点为,求直线的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为lx=2.
(1)求椭圆的标准方程;
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1上任一点P,由点Px轴作垂线PQ,垂足为Q,设点MPQ上,且=2,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于AB两点,设N是过点且平行于x轴的直线上一动点,且满足 (O为原点),且四边形OANB为矩形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,F是抛物线Cx2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过MFO三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程.
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为

(1)求椭圆的标准方程;
(2)点为椭圆上除长轴端点外的任一点,直线与椭圆的右准线分别交于点
①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;
②已知常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6,直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

同步练习册答案