精英家教网 > 高中数学 > 题目详情
精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大小:
(Ⅱ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
分析:(1)由已知中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,由勾股定理可得PA⊥AB,PA⊥AD,由线面垂直的判定定理可得PA⊥平面ABCD;
(2)设F为PC中点,取PE中点G,连接FG、BG,设AC、BD交于O,连接OE,由三角形中位线定理可得GF∥EC,OE∥BP,根据面面平行的判定定理可得平面BGF∥平面AEC,由面面平行的性质可得BF∥平面AEC.
解答:精英家教网解:(1)由ABCD是菱形,且∠ABC=60°得
AB=BC=CD=AD=AC=PA=a
由PB=PD=
2
a
得PB2=PA2+AB2,PD2=PA2+AD2
∴PA⊥AB,PA⊥AD
∴PA⊥平面ABCD
(2)设F为PC中点,取PE中点G,连接FG、BG
设AC、BD交于O,连接OE
由PG=GE,PF=FC得GF∥EC
由DO=OB,DE=EG得OE∥BG
∴平面BGF∥平面AEC
∴BF∥平面AEC
∴F是PC中点时,BF∥平面AEC
点评:本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,其中(1)的关键是利用勾股定理证得PA⊥AB,PA⊥AD,(2)的关键是证得BGF∥平面AEC.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=
2
SA,点P在SD上,且SD=3PD.
(1)证明SA⊥平面ABCD;
(2)设E是SC的中点,求证BE∥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥 P-ABCD中,∠ABC=60°,PA⊥平面ABCD,点E、F、G分别为CD、PD、PB的中点.PA=AD=2.
(1)证明:PC∥平面FAE;
(2)求二面角F-AE-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
2
,点F是PC的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求BF与平面ABCD所成角的大小;
(Ⅲ)若点E在棱PD上,当
PE
PD
为多少时二面角E-AC-D的大小为
π
6

查看答案和解析>>

同步练习册答案