精英家教网 > 高中数学 > 题目详情
11.已知(2x2+x-y)n的展开式中各项系数的和为32,则展开式中x5y2的系数为120.(用数字作答)

分析 根据(2x2+x-y)n的展开式中各项系数的和为32,即2n=32,求出n=5,将(2x2+x-y)5=[(x2+x)-y]5,利用通项公式,求出x5y2的项,可得其系数.

解答 解:由题意,(2x2+x-y)n的展开式中各项系数的和为32,即2n=32,
∴n=5,
那么(2x2+x-y)5=[(2x2+x)-y]5
通项公式Tr+1=${C}_{5}^{r}(-y)^{r}(2{x}^{2}+x)^{5-r}$,
展开式中含有x5y2,可知r=2.
那么(2x2+x)3中展开必然有x5
由通项公式,可得${C}_{3}^{t}(2{x}^{2})^{3-t}{x}^{t}$
含有x5的项:则t=1,
∴展开式中x5y2的系数为${{C}_{5}^{2}C}_{3}^{1}{2}^{2}$=120.
故答案为120.

点评 本题主要考查二项式定理的应用,把三项改为二项,利用通项公式展开式中含有x5y2,求出满足要求次数,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.数列{an}的前n项和为Sn,a1=1,${a_n}+{a_{n+1}}=3×{2^{n-1}}$,则S2017=(  )
A.22018-1B.22018+1C.22017-1D.22017+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(x+φ)-$\sqrt{3}$cos(x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=π对称,则cos2φ=(  )
A.-$\frac{\sqrt{3}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex
(1)讨论函数g(x)=f(ax)-x-a的单调性;
(2)证明:f(x)+lnx+$\frac{3}{x}>\frac{4}{{\sqrt{x}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若x、y满足条件$\left\{\begin{array}{l}{2x+y-12≤0}\\{3x-2y+10≥0}\\{x-4y+10≤0}\end{array}\right.$,求z=x+2y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sinx•(4cos2x-1)的最小正周期是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)为偶函数,当x>0时,f(x)=xlnx-x,则曲线y=f(x)在点(-e,f(-e))处的切线方程为x+y+e=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinα=$\frac{4}{5}$,sin(α+β)=$\frac{3}{5}$,且α,β∈(0,π),则tanβ可能的取值是④⑤(填序号).
①$\frac{25}{24}$;②-$\frac{25}{24}$;③$\frac{7}{24}$;④-$\frac{7}{24}$;⑤不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线$x=2\sqrt{2}$上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求$\frac{S_1}{S_2}$的最大值.

查看答案和解析>>

同步练习册答案