精英家教网 > 高中数学 > 题目详情
7.数列{an}的前n项和为Sn,a1=1,${a_n}+{a_{n+1}}=3×{2^{n-1}}$,则S2017=(  )
A.22018-1B.22018+1C.22017-1D.22017+1

分析 由a1=1和${a_{n+1}}=3×{2^{n-1}}-{a_n}$,可知数列{an}唯一确定,并且a2=2,a3=4,a4=8,猜测${a_n}={2^{n-1}}$,经验证${a_n}={2^{n-1}}$是满足题意的唯一解.利用等比数列的求和公式即可得出.

解答 解:由a1=1和${a_{n+1}}=3×{2^{n-1}}-{a_n}$,可知数列{an}唯一确定,并且a2=2,a3=4,a4=8,
猜测${a_n}={2^{n-1}}$,经验证${a_n}={2^{n-1}}$是满足题意的唯一解.
∴S2017=$\frac{{2}^{2017}-1}{2-1}$=22017-1.
故选:C.

点评 本题考查了等比数列的通项公式与求和公式、猜想与归纳法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(ax-1)lnx+$\frac{x^2}{2}$.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线l的方程;
(Ⅱ)设函数g(x)=f'(x)有两个极值点x1,x2,其中x1∈(0,e),求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某超市对某月(30天)每天顾客使用信用卡购物的人数进行了统计,得到如图所示的样本茎叶图,则该样本的中位数、众数、极差分别是(  )
A.44,45,56B.44,43,56C.44,43,57D.45,43,57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$({\frac{π}{8},0})$是函数f(x)=sinωx+cosωx图象的一个对称中心,则ω的取值可以是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则$z=\frac{9xy}{{9{x^2}+{y^2}}}$的取值范围为(  )
A.$[{\frac{18}{13},\frac{3}{2}}]$B.$[{\frac{45}{34},\frac{3}{2}}]$C.$[{\frac{45}{34},\frac{18}{13}}]$D.$[{\frac{18}{13},\frac{45}{34}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,则满足z-i=|1+2i|的复数z在复平面上对应点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量X服从正态分布N(3,σ2),且P(X<5)=0.8,则P(1<X<3)=0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(2x2+x-y)n的展开式中各项系数的和为32,则展开式中x5y2的系数为120.(用数字作答)

查看答案和解析>>

同步练习册答案