精英家教网 > 高中数学 > 题目详情
16.已知随机变量X服从正态分布N(3,σ2),且P(X<5)=0.8,则P(1<X<3)=0.3.

分析 根据随机变量X服从正态分布N(3,σ2),看出这组数据对应的正态曲线的对称轴x=3,根据正态曲线的特点,即可得到结果.

解答 解:∵随机变量X服从正态分布N(3,σ2),
∴对称轴是x=3.
∵P(X<5)=0.8,
∴P(X≥5)=0.2,
∴PP(1<X<3)=0.5-0.2=0.3.
故答案为0.3.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性,考查对称区间的概率相等,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2+x-2<0},B={x|y=log2x},则A∩B=(  )
A.(-2,1)B.(-2,0)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}的前n项和为Sn,a1=1,${a_n}+{a_{n+1}}=3×{2^{n-1}}$,则S2017=(  )
A.22018-1B.22018+1C.22017-1D.22017+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将长宽分别为2和1的长方形ABCD沿对角线AC折起,得到四面体A-BCD,则四面体A-BCD外接球的表面积为(  )
A.B.C.10πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面ABCD为菱形,∠PAD=∠PAB,AC交BD于O,
( I)求证:平面PAC⊥平面PBD
( II)延长BC至G,使BC=CG,连结PG,DG.试在棱PA上确定一点E,使PG∥平面BDE,并求此时$\frac{AE}{EP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),且点$P({1,\frac{3}{2}})$在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(x+φ)-$\sqrt{3}$cos(x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=π对称,则cos2φ=(  )
A.-$\frac{\sqrt{3}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex
(1)讨论函数g(x)=f(ax)-x-a的单调性;
(2)证明:f(x)+lnx+$\frac{3}{x}>\frac{4}{{\sqrt{x}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinα=$\frac{4}{5}$,sin(α+β)=$\frac{3}{5}$,且α,β∈(0,π),则tanβ可能的取值是④⑤(填序号).
①$\frac{25}{24}$;②-$\frac{25}{24}$;③$\frac{7}{24}$;④-$\frac{7}{24}$;⑤不存在.

查看答案和解析>>

同步练习册答案