精英家教网 > 高中数学 > 题目详情
4.将长宽分别为2和1的长方形ABCD沿对角线AC折起,得到四面体A-BCD,则四面体A-BCD外接球的表面积为(  )
A.B.C.10πD.20π

分析 折叠后的四面体的外接球的半径,就是长方形ABCD沿对角线AC的一半,求出球的半径即可求出球的表面积.

解答 解:由题意可知,直角三角形斜边的中线是斜边的一半,
所以长宽分别为2和1的长方形ABCD沿对角线AC折起二面角,得到四面体A-BCD,
则四面体A-BCD的外接球的球心O为AC中点,半径$R=\frac{{\sqrt{5}}}{2}$,
所求四面体A-BCD的外接球的表面积为4π×($\frac{\sqrt{5}}{2}$)2=5π.
故选B.

点评 本题主要考查几何体的外接球的相关知识,考查空间想象能力,计算能力,求出球的半径,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列函数中既是偶函数,又在区间(0,1)上单调递增的是(  )
A.y=cosxB.$y={x^{\frac{1}{2}}}$C.y=2|x|D.y=|lgx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$({\frac{π}{8},0})$是函数f(x)=sinωx+cosωx图象的一个对称中心,则ω的取值可以是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,则满足z-i=|1+2i|的复数z在复平面上对应点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知△ABC中,D为BC上一点,∠DAC=$\frac{π}{4}$,cos∠BDA=-$\frac{3}{5}$,AC=4$\sqrt{2}$.
( I)求AD的长;
( II)若△ABD的面积为14,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量X服从正态分布N(3,σ2),且P(X<5)=0.8,则P(1<X<3)=0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{2i}{1+i}$,则z•$\overline z$=(  )
A.2B.2iC.4D.4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a,b∈R,ab≠0,且a+b=1,则下列不等式中,恒成立的是(  )
A.a2b2≤$\frac{1}{16}$B.a2+b2≥$\frac{1}{2}$C.(1+$\frac{1}{a}$)(1+$\frac{1}{b}$)≥9D.$\frac{1}{a}$+$\frac{1}{b}$≥4

查看答案和解析>>

同步练习册答案