精英家教网 > 高中数学 > 题目详情
1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),且点$P({1,\frac{3}{2}})$在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

分析 (Ⅰ)利用已知条件求出c=1,得到a2=b2+1.通过点$P({1,\frac{3}{2}})$在椭圆C上,得到$\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1$,可解椭圆C的标准方程.
(Ⅱ)设直线l的方程为y=kx+2,点A(x1,y1),B(x2,y2),通过联立直线与椭圆方程,利用韦达定理以及x1x2+y1y2>0.判别式的符号,求解k的范围即可.

解答 解:(Ⅰ)由题意,得c=1,
所以a2=b2+1.
因为点$P({1,\frac{3}{2}})$在椭圆C上,
所以$\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1$,可解得a2=4,b2=3.
则椭圆C的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(Ⅱ)设直线l的方程为y=kx+2,点A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+2}\end{array}\right.$,得(4k2+3)x2+16kx+4=0.
因为△=48(4k2-1)>0,所以${k^2}>\frac{1}{4}$,
由根与系数的关系,得${x_1}+{x_2}=\frac{-16k}{{4{k^2}+3}},{x_1}{x_2}=\frac{4}{{4{k^2}+3}}$.
因为∠AOB为锐角,所以$\overrightarrow{OA}•\overrightarrow{OB}>0$,即x1x2+y1y2>0.
所以x1x2+(kx1+2)(kx2+2)>0,
即(1+k2)x1x2+2k(x1+x2)+4>0,$({1+{k^2}})•\frac{4}{{4{k^2}+3}}+2k•\frac{-16k}{{4{k^2}+3}}+4>0$$\frac{{-12{k^2}+16}}{{4{k^2}+3}}>0$
所以${k^2}<\frac{4}{3}$.
综上$\frac{1}{4}<{k^2}<\frac{4}{3}$,
解得$-\frac{{2\sqrt{3}}}{3}<k<-\frac{1}{2}$或$\frac{1}{2}<k<\frac{{2\sqrt{3}}}{3}$.
所以,所求直线的斜率的取值范围为$-\frac{{2\sqrt{3}}}{3}<k<-\frac{1}{2}$或$\frac{1}{2}<k<\frac{{2\sqrt{3}}}{3}$.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,范围问题的处理方法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=$\frac{π}{3}$,且$|{\overrightarrow{OQ}}|=3|{\overrightarrow{OP}}$|,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知△ABC中,D为BC上一点,∠DAC=$\frac{π}{4}$,cos∠BDA=-$\frac{3}{5}$,AC=4$\sqrt{2}$.
( I)求AD的长;
( II)若△ABD的面积为14,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量X服从正态分布N(3,σ2),且P(X<5)=0.8,则P(1<X<3)=0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,则$\frac{y}{x+2}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{2i}{1+i}$,则z•$\overline z$=(  )
A.2B.2iC.4D.4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若A为第二象限的角,sinA=$\frac{3}{5}$,那么tan2A=$-\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosC+(2a+c)cosB=0.
(I)求角B的值;
(II)若b=1,$cosA+cosC=\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案