分析 已知等式左边利用诱导公式化简求出tanθ与cosα的值,根据θ与α的范围,利用同角三角函数间的基本关系求出cosθ,sinθ,sinα的值,原式各项变形后代入计算即可求出值.
解答 解:∵cot(θ+$\frac{7}{2}$π)=-tanθ=$\frac{3}{4}$,即tanθ=-$\frac{3}{4}$,cos(π-α)=-cosα=$\frac{1}{2}$,即cosα=-$\frac{1}{2}$,
∵$\frac{π}{2}$<θ<π,$\frac{π}{2}$<α<π,
∴cosθ=-$\sqrt{\frac{1}{1+ta{n}^{2}θ}}$=-$\frac{4}{5}$,sinθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{3}{5}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴$\frac{sinθ+cosθ}{sinθ-cosθ}$=$\frac{tanθ+1}{tanθ-1}$=$\frac{-\frac{3}{4}+1}{-\frac{3}{4}-1}$=-$\frac{1}{7}$;sin2θ=2sinθcosθ=-$\frac{24}{25}$;cos(-2α)=cos2α=2cos2α-1=-$\frac{1}{2}$,sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(sinα-cosα)=$\frac{\sqrt{6}+\sqrt{2}}{2}$.
点评 此题考查了同角三角函数间的基本关系,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com