精英家教网 > 高中数学 > 题目详情
已知圆C以C(t,
2
t
)(t∈R,t≠0)
为圆心且经过原点O.
(Ⅰ)若直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
由题知,圆C方程为(x-t)2+(y-
2
t
)2=t2+
4
t2

化简得x2-2tx+y2-
4
t
y=0

(Ⅰ)∵|OM|=|ON|,则原点O在MN的中垂线上,
设MN的中点为H,则CH⊥MN.
∴C,H,O三点共线,
则直线OC的斜率k=
2
t
t
=
2
t2
=
1
2
?t=2
或t=-2,
知圆心C(2,1)或C(-2,-1),
所以圆方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,
由于当圆方程为(x+2)2+(y+1)2=5时,
直线2x+y-4=0到圆心的距离d>r,不满足直线和圆相交,故舍去.
∴圆C方程为(x-2)2+(y-1)2=5.   
(Ⅱ) 点B(0,2)关于直线x+y+2=0的对称点为B′(-4,-2),
则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,
又B′到圆上点Q的最短距离为|B/C|-r=
(-6)2+32
-
5
=3
5
-
5
=2
5

所以|PB|+|PQ|的最小值为2
5

直线B′C的方程为y=
1
2
x

则直线B′C与直线x+y+2=0的交点P的坐标为(-
4
3
,-
2
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C以(3,-1)为圆心,5为半径,过点S(0,4)作直线l与圆C交于不同两点A,B.
(Ⅰ)若AB=8,求直线l的方程;
(Ⅱ)当直线l的斜率为-2时,过直线l上一点P,作圆C的切线PT(T为切点)使PS=PT,求点P的坐标;
(Ⅲ)设AB的中点为N,试在平面上找一点M,使MN的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C以C(t,
2t
)(t∈R,t≠0)
为圆心且经过原点O.
(1)若t=2,写出圆C的方程;
(2)在(1)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C以C(t,
2t
)(t∈R,t≠0)
为圆心且经过原点O.
(Ⅰ)若直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•湛江二模)已知直线l的参数方程为
x=
3
t
y=t
(t为参数),则此直线的倾斜角α=
π
6
π
6
;又半径为2,经过原点O的圆C,其圆心在第一象限并且在直线l上,若以O为极点,x轴的正半轴为极轴建立极坐标系,则圆C的极坐标方程为
ρ=4cos(θ-
π
6
)
ρ=4cos(θ-
π
6
)

查看答案和解析>>

同步练习册答案