精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)(x∈R)的部分图象如图所示.

(1)求f(x)的表达式;

(2)设g(x)=f(x)-f,求函数g(x)的最小值及相应的x的取值集合.

 

【答案】

(1)由图象可知:A=1,

函数f(x)的周期T满足:

=-=,T=π,

∴T==π.∴ω=2.

∴f(x)=sin(2x+φ).

又f(x)图象过点,

∴f()=sin=1,

+φ=2kπ+(k∈Z).

又|φ|<,故φ=.

∴f(x)=sin.

(2)解法1:g(x)=f(x)-f=sin-sin

=sin-sin

=sin2x+cos2x+sin2x-cos2x=2sin2x,

由2x=2kπ-(k∈Z),

得x=kπ-(k∈Z),

∴g(x)的最小值为-2,相应的x的取值集合为

.

解法2:g(x)

=f(x)-f(x+)

=sin

-sin

=sin

-cos

=2sin

=2sin2x,

由2x=2kπ-(k∈Z),

得x=kπ-(k∈Z),

∴g(x)的最小值为-2,相应的x的取值集合为

.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.

(1)求函数f(x)的解析式;

(2)设k>1,解关于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题

(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题

(本小题满分l2分)

已知函数f(x)=a

 

(1)求证:函数yf(x)在(0,+∞)上是增函数;

 

(2)f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题

( (本小题满分13分)

已知函数f(x)=(a-1)xaln(x-2),(a<1).

(1)讨论函数f(x)的单调性;

(2)设a<0时,对任意x1x2∈(2,+∞),<-4恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题

(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函数的定义域   (2)讨论函数f(X)的单调性

 

查看答案和解析>>

同步练习册答案