分析 (1)求出两个函数的导函数,利用f(x)与g(x)在x=0处有相同的切线,可得f′(0)=g'(0),且f(0)=g(0),联立求得a,b的值,则函数解析式可求,求出函数的单调区间,然后对t分类求得f(x)在[t,t+1](t∈R)上的最小值;
(2)由对任意的x≥-2,kf(x)≥g(x)恒成立,得2kex(x+1)≥x2+4x+2,分x=-1、-2≤x<-1、x>-1,分离参数k,然后构造函数,由导数求出函数的最值得答案.
解答 解:(1)由f(x)=aex(x+1),g(x)=x2+bx+2,得f′(x)=aex(x+2),g'(x)=2x+b.
∵两函数在x=0处有相同的切线,又f′(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,解得:a=2,b=4.
∴f(x)=2ex(x+1),g(x)=x2+4x+2.
f′(x)=2ex(x+2),由f′(x)>0,得x>-2,由f′(x)<0,得x<-2,
∴f(x)在(-2,+∞)上单调递增,在(-∞,-2)上单调递减.
①当t+1≤-2,即t≤-3时,f(x)在[t,t+1]上单调递减,
∴$f{(x)_{min}}=f({t+1})=2{e^{t+1}}({t+2})$;
②当$\left\{\begin{array}{l}t<-2\\ t+1>-2\end{array}\right.$,即-3<t<-2时,f(x)在[t,-2]上单调递减,在(-2,t+1]上单调递增,
∴$f{(x)_{min}}=f({-2})=-2{e^{-2}}$;
③当t≥-2时,f(x)在[t,t+1]上单调递增,∴$f{(x)_{min}}=f(t)=2{e^t}({t+1})$.
∴$f{(x)_{min}}=\left\{\begin{array}{l}2{e^{t+1}}({t+2}),t≤-3\\-2{e^{-2}},-3<t<-2\\ 2{e^t}({t+1}),t≥-2\end{array}\right.$;
(2)若对任意的x≥-2,kf(x)≥g(x)恒成立,即2kex(x+1)≥x2+4x+2(*)对任意的x≥-2恒成立.
(i)当x=-1时,上式化为0≥-1,显然对任意的实数k恒成立.
(ii)当-2≤x<-1时,(*)式化为$k≤\frac{{{x^2}+4x+2}}{{2{e^x}({x+1})}}$,对任意的-2≤x<-1恒成立.
令$h(x)=\frac{{{x^2}+4x+2}}{{2{e^x}({x+1})}}$,则$h'(x)=\frac{{-x{{({x+2})}^2}}}{{2{e^x}{{({x+1})}^2}}}$,
∴当-2≤x<-1时,h'(x)≥0,∴h(x)在[-2,-1)上单调递增,
此时$h{(x)_{min}}=h({-2})={e^2}$,∴k≤e2.
(iii)当x>-1时,(*)式化为$k≥\frac{{{x^2}+4x+2}}{{2{e^x}({x+1})}}$,对任意的x>-1恒成立.
由(ii)知h(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,
此时h(x)max=h(0)=1,∴k≥1.
综上,实数k的取值范围为[1,e2].
点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数研究函数的单调性及函数的最值,训练了恒成立问题的求解方法,考查分类讨论的数学思想方法,属难度较大的题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-ln2}{2}$ | B. | $\frac{5-ln2}{2}$ | C. | $\frac{3+ln2}{2}$ | D. | $\frac{5+ln2}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若命题p:?x∈R,x3-x2+1<0,则命题¬p:?x∈R,x3-x2+1>0 | |
| B. | “a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件 | |
| C. | 若x≠0,则$x+\frac{1}{x}≥2$ | |
| D. | 函数$f(x)=2sin(2x+\frac{π}{6})$图象的一条对称轴是x=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(2,6) | B. | $\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,8) | C. | $\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,1) | D. | $\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(6,-4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com