精英家教网 > 高中数学 > 题目详情
16.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0\end{array}\right.$,则z=x2+y2的取值范围为$[{\frac{9}{10},9}]$.

分析 根据已知的约束条件画出满足约束条件的可行域,再用图象判断,求出目标函数的最大值.

解答 解:画出$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0\end{array}\right.$的可行域如图所示,其中B(3,0),C(1,1),D(0,1),
若目标函数z=x2+y2的几何意义是可行域内的点到坐标原点距离的平方.由图形可知仅在点(3,0)取得最大值,z=9.
由图知,原点到直线x+3y-3=0的距离最小,d=$\frac{|-3|}{\sqrt{1+9}}$,
可得z=x2+y2=d2=$\frac{9}{10}$.
则z=x2+y2的取值范围为:[$\frac{9}{10}$,9].
故答案为:[$\frac{9}{10}$,9].

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.判断几何意义,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直线的极坐标方程为3ρcosθ-4ρsinθ=3,求点P(2,$\frac{3π}{2}$)到这条直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C1:x2+y2=9与圆C2:(x-3)2+(y-4)2=r2(r>0)相外切.
(1)若圆C2关于直线l:$\frac{ax}{9}-\frac{by}{12}$=1对称,求由点(a,b)向圆C2所作的切线长的最小值;
(2)若直线l1过点A(1,0)且与圆C2相交于P,Q两点,求△C2PQ面积的最大值,并求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,
则称函数f(x)为“1的饱和函数”.给出下列五个函数:
①f(x)=2x;②f(x)=$\frac{1}{x}$;③$f(x)=lg({x^2}-\frac{1}{2})$;④$f(x)=\frac{2x-1}{e^x}$.
其中是“1的饱和函数”的所有函数的序号为(  )
A.①②④B.②③④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知焦点在y轴上的椭圆$\frac{x^2}{m}+\frac{y^2}{5}=1$的离心率$e=\frac{{\sqrt{10}}}{5}$,则m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,且f(x)与g(x)在x=0处有相同的切线.
(1)求函数f(x)的解析式,并讨论f(x)在[t,t+1](t∈R)上的最小值;
(2)若对任意的x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知各项均为正数的等比数列{an}中,a2a9=10,则数列{lgcn}的前10项和为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.a,b中至少有一个不为零的充要条件是(  )
A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三条不同直线的a,b,c,其中正确的命题个数是(  )
(1)若a∥b,b∥c,则a∥c;
(2)若a⊥b,c⊥b,a∥c;
(3)若a∥c,c⊥b,则b⊥a;
(4)若a与b,a与c都是异面直线,则b与c也是异面直线.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案