精英家教网 > 高中数学 > 题目详情
11.下列各组中的两个向量共线的是(  )
A.$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(2,6)B.$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,8)C.$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,1)D.$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(6,-4)

分析 利用向量共线定理即可判断出结论.

解答 解:若两向量满足$\overrightarrow{a}=λ\overrightarrow{b}$,则两向量共线,
D中$\overrightarrow{b}$=-$\overrightarrow{a}$,∴两向量共线.
故选:D.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,且f(x)与g(x)在x=0处有相同的切线.
(1)求函数f(x)的解析式,并讨论f(x)在[t,t+1](t∈R)上的最小值;
(2)若对任意的x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合A={x|y=lg(x2-4x)},B={x|x<2},则(∁UA)∩B=(  )
A.{x|x≥0}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|0≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(2,2).
(1)求抛物线C的方程;
(2)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1,k2变化且满足k1+k2=-1时,证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三条不同直线的a,b,c,其中正确的命题个数是(  )
(1)若a∥b,b∥c,则a∥c;
(2)若a⊥b,c⊥b,a∥c;
(3)若a∥c,c⊥b,则b⊥a;
(4)若a与b,a与c都是异面直线,则b与c也是异面直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边为a,b,c.已知a=2c,且A-C=$\frac{π}{2}$.
(1)求sinC的值;
(2)当b=1时,求△ABC外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是(  )
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直角的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2016个数,使这2018个数构成以a为首项的等差数列{an},且它们的和为2018,求斜边的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…,Sn,且${T_n}=-{S_1}+{S_2}-{S_3}+…+{(-1)^n}{S_n}$,求满足不等式${T_{2n}}>6•{2^{n+1}}$的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足$\sqrt{5}{X_n}={({\frac{c}{a}})^n}-{({-\frac{a}{c}})^n}\;(n∈{N^*})$,证明:数列$\left\{{\sqrt{X_n}}\right\}$中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax-$\frac{a}{4}+\frac{1}{2}$,x∈[0,1],求f(x)的最小值g(a).

查看答案和解析>>

同步练习册答案