分析 (1)设抛物线方程为y2=ax,代入M(2,2),可得a=2,即可求抛物线C的方程;
(2)由题意可知直线AB的斜率存在且不为零,可设AB的方程为x=my+b,和(1)中求得轨迹联立后利用根与系数关系得到A,B两点的横纵坐标的和,结合k1+k2=-1求得直线方程,由线系方程得答案.
解答 解:(1)设抛物线方程为y2=ax,代入M(2,2),可得a=2,
∴抛物线C的方程为y2=2x;
(2)由题意可知直线AB的斜率存在且不为零,可设AB的方程为x=my+b,
并设A(x1,y1),B(x2,y2),
联立直线与抛物线可得y2-2my-2b=0,
从而有y1+y2=2m ①,y1y2=-2b ②,
又k1+k2=-1,即$\frac{{y}_{1}-2}{{x}_{1}-2}$+$\frac{{y}_{2}-2}{{x}_{2}-2}$=-1,
∴$\frac{{y}_{1}-2}{\frac{{{y}_{1}}^{2}}{2}-2}$+$\frac{{y}_{2}-2}{\frac{{{y}_{2}}^{2}}{2}-2}$=-1
∴-(y1+2)(y2+2)=2(y1+y2+4),
展开即得y1y2+4(y1+y2)+12=0,
将①②代入得b=4m+6,
得AB:x=my+4m+6.
故直线AB经过定点(6,-4)
点评 本题考查轨迹方程,考查了直线与圆锥曲线的关系,考查了学生的计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<-2或m>5 | B. | -5<m<2 | C. | -2<m<5 | D. | m<-5或m>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,-$\frac{1}{2}$] | C. | [-$\frac{2}{3}$,$\frac{1}{2}$] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(2,6) | B. | $\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,8) | C. | $\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,1) | D. | $\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(6,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com