精英家教网 > 高中数学 > 题目详情
某三棱锥的三视图如图所示,该三棱锥的体积是(  )
A、18
3
B、36
3
C、12
3
D、24
3
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体是三棱锥,由正视图得三棱锥的高为6,由俯视图与侧视图得底面三角形的底边长为6,该边上的高为3
3
,代入棱锥的体积公式计算.
解答: 解:由三视图知:几何体是三棱锥,且三棱锥的高为6,
底面三角形的底边长为3+3=6,高为3
3

∴几何体的体积V=
1
3
×
1
2
×6×3
3
×6=18
3

故选:A.
点评:本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
2
3x+1
+sinx,则f(-5)+f(-4)+f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,∠A=60°,∠A的平分线交BC于D,若AB=4,且
AD
=
1
4
AC
AB
(λ∈R)
,则AD的长为(  )
A、2
3
B、3
3
C、4
3
D、5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-∞,+∞),如果f(x+2014)=
2
sinx,x≥0
lg(-x),x<0
那么f(2014+
π
4
)•f(-7986)=(  )
A、2014
B、4
C、
1
4
D、
1
2014

查看答案和解析>>

科目:高中数学 来源: 题型:

任取实数a、b∈[-1,1],则a、b满足|a-2b|≤2的概率为(  )
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2-x+1)-m,若?a,b,c∈R,且a<b<c,使得f(a)=f(b)=f(c)=0.则实数m的取值范围是(  )
A、(-∞,1)
B、(1,
3
e
C、(1,e3
D、(-∞,1)∪(e3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:“a>3”q:“f(x)=x3-ax2+1在(0,2)上有唯一零点”,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列.
(1)求椭圆的离心率
(2)若直线l与此椭圆相交于A,B两点,且AB中点M为(-2,1),|AB|=4
3
,求直线l的方程和椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据三个函数f(x)=2x,g(x)=2x,h(x)=log2x给出以下五句话:
(1)f(x),g(x),h(x)在其定义域上都是增函数;
(2)f(x)的增长速度始终不变;
(3)f(x)的增长速度越来越快;
(4)g(x)的增长速度越来越快;
(5)h(x)的增长速度越来越慢.
其中正确的个数为(  )
A、2B、3C、4D、5

查看答案和解析>>

同步练习册答案