精英家教网 > 高中数学 > 题目详情
任取实数a、b∈[-1,1],则a、b满足|a-2b|≤2的概率为(  )
A、
1
8
B、
1
4
C、
3
4
D、
7
8
考点:几何概型
专题:概率与统计
分析:用不等式组表示平面区域,利用几何概型的概率公式,分别求出对应区域的面积,即可得到结论.
解答: 解:∵a、b∈[-1,1],
∴-1≤a≤1,-1≤b≤1,对应区域的面积为2×2=4,
不等式|a-2b|≤2对应的区域如图(阴影部分):
当a=-1时有a-2b=-2得b=
1
2

则阴影部分的面积为4-2×
1
2
×(1-
1
2
)×1
=4-
1
2
=
7
2

由几何概型的概率公式可得a、b满足|a-2b|≤2的概率P=
7
2
4
=
7
8

故选:D.
点评:本题主要考查几何概型的应用,利用不等式表示平面区域,求出相应的平面区域,求出相应的面积是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(x,y).若x∈[-1,2],y∈[-1,1],则向量
a
b
的夹角是钝角的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次选秀比赛中,五位评委为一位表演者打分,若去掉一个最低分后平均分为90分,去掉一个最高分后平均分为86分.那么最高分比最低分高
 
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)<0,
f(x)
g(x)
=ax
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则关于x的方程abx2+
2
x+
5
2
=0(b∈(0,1))
有两个不同实根的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+1, x≤0
log2x, x>0
下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是(  )
A、①④B、②③C、①②D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的三视图如图所示,该三棱锥的体积是(  )
A、18
3
B、36
3
C、12
3
D、24
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC所在平面内一点,且2
OA
+
OB
+
OC
=0
,则△ABO与△ABC的面积之比为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上是奇函数,且f(x+3)=-f(x),当0<x<2时,f(x)=x2,求f(0),f(-3),f(2013).

查看答案和解析>>

科目:高中数学 来源: 题型:

若P是两条异面直线l,m外的任意一点,则下列命题:
①过点P有且只有一条直线与l,m都平行;
②过点P有且只有一条直线与l,m都垂直;
③过点P有且只有一条直线与l,m都相交;
④过点P有且只有一条直线与l,m都异面.
其中假命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案