精英家教网 > 高中数学 > 题目详情

已知函数

(1)写出函数的单调递减区间;

(2)设的最小值是,最大值是,求实数的值.

解析:

         

       (1)

          为所求

        (2)

          

           

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[x]的函数值表示不超过x的最大整数,例如:[-3.5]=-4,[2.7]=2
(1)如果实数a满足[2a+3]=3,且[3a-1]=-1,求实数a的取值范围;
(2)如果函数g(x)=x-f(x),它的定义域为(-1,3)
①求g(-0.4)和g(2.2)的值;
②试用分段函数的形式写出函数g(x)的解析式,并作出函数g(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x-1,x<0
0,x=0
3x+1,x>0
,输入自变量的值,输出对应的函数值.
(1)画出算法框图.(2)写出程序语句.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-5      x<-3
2x+1  -3≤x≤2
5         x>2
(1)求函数值f(2),f[f(1)];(2)画出函数图象,并写出f(x)的值域.(不必写过程)

查看答案和解析>>

同步练习册答案