精英家教网 > 高中数学 > 题目详情

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

【答案】
(1)解:设隔热层厚度为xcm,由题设,每年能源消耗费用为

再由C(0)=8,得k=40,

因此

而建造费用为C1(x)=6x,

最后得隔热层建造费用与20年的能源消耗费用之和为


(2)解: ,令f'(x)=0,即

解得x=5, (舍去).

当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为

当隔热层修建5cm厚时,总费用达到最小值为70万元


【解析】(1)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= ,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到 .建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(2)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形,直角梯形,直角梯形所在平面两两垂直, ,且 .

1)求证: 四点共面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,与函数y= 有相同定义域的是(
A.f(x)=lnx
B.
C.f(x)=|x|
D.f(x)=ex

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且 ,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若三个内角A,B,C成等差数列,且a= ,b= ,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.
(1)求应从水果类、点心类、小吃类中分别买回的种数;
(2)若某游客从买回的6种特产中随机抽取2种送给自己的父母,
①列出所有可能的抽取结果;
②求抽取的2种特产均为小吃的概率.

查看答案和解析>>

同步练习册答案