精英家教网 > 高中数学 > 题目详情

【题目】一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.
(1)求应从水果类、点心类、小吃类中分别买回的种数;
(2)若某游客从买回的6种特产中随机抽取2种送给自己的父母,
①列出所有可能的抽取结果;
②求抽取的2种特产均为小吃的概率.

【答案】
(1)解:因为19+38+57=114,所以从水果类、点心类、小吃类中分别抽取的数目为:

所以应从水果类、点心类、小吃类中分别买回的种数为1,2,3.


(2)解:①在买回的6种特产中,3种特色小吃分别记为A1,A2,A3,2种点心分别记为a,b,水果记为甲,

则抽取的2种特产的所有可能情况为:

{A1,A2},{A1,A3},{A1,a},{A1,b},{A1,甲},

{A2,A3},{A2,a},{A2,b},{A2,甲},

{A3,a},{A3,b},{A3,甲},

{a,b},{a,甲},{b,甲},共15种.

②记从买回的6种特产中抽取2种均为小吃为事件B,

则事件B的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,

所以


【解析】(1)先做出各种特色食品的总数,即样本容量,用要抽取的种数6除以总数,得到每个个体被抽到的概率,用概率乘以各种特色食品的总数,得到结果;(2)利用列举法列举出从买回的6种特产中随机抽取2种的所有方法,然后找出抽取的2种特产均为小吃的方法种数,直接利用古典概型的概率计算公式计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两个焦点为
的曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=x2﹣(1+a)x+a在D内的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某轮胎公司生产的轮胎的宽度,需要抽检一批轮胎(共10个轮胎),已知这批轮胎宽度(单位: )的折线图如下图所示:

(1)求这批轮胎宽度的平均值;

(2)现将这批轮胎送去质检部进行抽检,抽检方案是:从这批轮胎中任取5个作检验,这5个轮胎的宽度都在内,则称这批轮胎合格,如果抽检不合格,就要重新再抽检一次,若还是不合格,这批轮胎就认定不合格.

求这批轮胎第一次抽检就合格的概率;

为这批轮胎的抽检次数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命题p:x∈M,命题q:x∈N.
(1)当a=﹣6时,试判断命题p是命题q的什么条件;
(2)求a的取值范围,使命题p是命题q的一个必要但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1个该产品获利润5元,未售出的产品,每个亏损3元.根据历史资料,得到开学季市场需求量的频率分布直方图如图所示.该同学为这个开学季购进了160个该产品,以,单位:个)表示这个开学季内的市场需求量.

(1)根据直方图估计这个开学季内市场需求量的中位数;

(2)根据直方图估计利润不少于640元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论函数的单调性;

(II)对于任意,有,求实数的范围

查看答案和解析>>

同步练习册答案