分析 (1)由已知利用正弦定理,三角函数恒等变换的应用化简可得sinB=2sinBcosA,结合sinB≠0,可求cosA,进而可求A的值.
(2)由已知及余弦定理,平方和公式可求bc的值,进而利用三角形面积公式即可计算得解.
解答 解:(1)在△ABC中,∵acosC+ccosA=2bcosA,
∴sinAcosC+sinCcosA=2sinBcosA,
∴sin(A+C)=sinB=2sinBcosA,
∵sinB≠0,
∴$cosA=\frac{1}{2}$,可得:$A=\frac{π}{3}$.
(2)∵$cosA=\frac{1}{2}=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,$b+c=\sqrt{10}\;,\;\;a=2$,
∴b2+c2=bc+4,可得:(b+c)2=3bc+4=10,可得:bc=2.
∴$S=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}$.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,平方和公式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | b1b2…bn=b1b2…b17-n (n<17,n∈N*) | |
| B. | b1b2…bn=b1b2…b18-n(n<18,n∈N*) | |
| C. | b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*) | |
| D. | b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 累积净化量(克) | (3,5] | (5,8] | (8,12] | 12以上 |
| 等级 | P1 | P2 | P3 | P4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com