精英家教网 > 高中数学 > 题目详情
2.在等差数列{an}中,a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,相应地在等比数列{bn}中,若b9=1,则成立的等式是(  )
A.b1b2…bn=b1b2…b17-n (n<17,n∈N*
B.b1b2…bn=b1b2…b18-n(n<18,n∈N*
C.b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*
D.b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*

分析 根据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.

解答 解:在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n成立(n<19,n∈N*),
故相应的在等比数列{bn}中,若b9=1,则有等式b1b2…bn=b1b2…b17-n(n<17,n∈N*
故选A.

点评 本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,以点C(2,$\frac{π}{2}$)为圆心,半径为3的圆C与直线l:θ=$\frac{π}{3}$(ρ=R)交于A,B两点.
(1)求圆C及直线l的普通方程.
(2)求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a,b,c是三个正实数,且a(a+b+c)=bc,则$\frac{a}{b+c}$的最大值为$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α、β、γ是三个互不重合的平面,l是直线,给出下列命题
①若α⊥β,β⊥γ,则α∥γ;②若l上两点到α的距离相等,则l∥α;
③若l⊥α,l∥β,则α⊥β;④若α∥β,l∥α,l?β,则l∥β.
其中正确的命题是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17..有甲、乙、丙、丁四支球队进行单循环比赛,最后据各队积分决出名次.规定每场比赛必须决出胜负,其中胜方积2分,负方积1分,已知球队甲与球队乙对阵,甲队取胜的概率为$\frac{2}{5}$,与球队丙、丁对阵,甲队取胜的概率均为$\frac{1}{2}$,且各场次胜负情况彼此没有影响.
(1)甲队至少胜一场的概率;  
(2)求球队甲赛后积分ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将一枚骰子先后抛掷两次得到的点数依次记为a,b,则直线ax+by=0与圆(x-3)2+y2=3无公共点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二项式${({x^3}-\frac{2}{{\sqrt{x}}})^6}$展开式中,则x4项的系数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若$b+c=\sqrt{10}\;,\;\;a=2$,求△ABC的面积S.

查看答案和解析>>

同步练习册答案