分析 由已知条件可得a为方程x2+(b+c)x-bc=0的正根,求出a,再代入$\frac{a}{b+c}$变形化简利用基本不等式即可求出
解答 解:a(a+b+c)=bc,
∴a2+(b+c)a-bc=0,
∴a为方程x2+(b+c)x-bc=0的正根,
∴a=$\frac{-(b+c)+\sqrt{(b+c)^{2}+4bc}}{2}$,
∴$\frac{a}{b+c}$=$\frac{-(b+c)+\sqrt{(b+c)^{2}+4bc}}{2(b+c)}$=-$\frac{1}{2}$+$\frac{\sqrt{(b+c)^{2}+4bc}}{2(b+c)}$=-$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{1+\frac{4bc}{(b+c)^{2}}}$=-$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{1+\frac{4}{\frac{b}{c}+\frac{c}{b}+2}}$≤-$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{1+\frac{4}{4}}$=$\frac{\sqrt{2}-1}{2}$,当且仅当b=c时取等号,
故答案为:$\frac{\sqrt{2}-1}{2}$,
点评 本题考查了基本不等式的应用,关键是正确的转化,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=4sin(2x+\frac{π}{6})$ | B. | $y=-2sin(2x+\frac{π}{6})+2$ | C. | $y=-2sin(x+\frac{π}{3})+2$ | D. | $y=2sin(2x+\frac{π}{3})+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b1b2…bn=b1b2…b17-n (n<17,n∈N*) | |
| B. | b1b2…bn=b1b2…b18-n(n<18,n∈N*) | |
| C. | b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*) | |
| D. | b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com