【题目】在平面直角坐标系
中,已知点
,
,从直线
上一点P向圆
引两条切线
,
,切点分别为C,D.设线段
的中点为M,则线段
长的最小值为______.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过定点
的动圆是
与圆
相内切.
(1)求动圆圆心
的轨迹方程;
(2)设动圆圆心
的轨迹为曲线
,
是曲线
上的两点,线段
的垂直平分线过点
,求
面积的最大值(
是坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线C:
的焦点为F,过F的直线
交抛物线C于A,B两点.
(1)求线段AF的中点M的轨迹方程;
(2)已知△AOB的面积是△BOF面积的3倍,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点Q是圆
上的动点,点
,若线段QN的垂直平分线MQ于点P.
(I)求动点P的轨迹E的方程
(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线AB、AC的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
,过焦点F的直线l与抛物线C交于M,N两点.
(1)若直线l的倾斜角为
,求
的长;
(2)设M在准线上的射影为A,求证:A,O,N三点共线(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
,
,
,直角梯形
通过直角梯形
以直线
为轴旋转得到,且使得平面
平面
.
为线段
的中点,
为线段
上的动点.
![]()
(
)求证:
.
(
)当点
满足
时,求证:直线
平面
.
(
)当点
是线段
中点时,求直线
和平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com