【题目】如图,四边形是边长为2的菱形,且,平面,,,点是线段上任意一点.
(1)证明:平面平面;
(2)若的最大值是,求三棱锥的体积.
【答案】(1)见证明;(2)
【解析】
(1)推导出AC⊥BM,AC⊥BD,得AC⊥平面BMND,从而可得到证明;(2)由AE=CE和余弦定理可知,当AE最短即AE⊥MN,CE⊥MN时∠AEC最大,取MN中点H,连接H与AC、BD的交点O,知OH⊥平面ABCD,分别以直线,,为轴,轴,轴建立空间直角坐标系,设,利用二面角的平面角为,可求出a,然后利用VM﹣NAC=VM﹣EAC+VN﹣EAC可得结果.
(1)因为平面,则.
又四边形是菱形,则,又,
所以平面,因为AC在平面内,
所以平面平面.
(2)设与的交点为,连结. 因为平面,则,又为的中点,则,由余弦定理得,.当AE最短时∠AEC最大,此时,,,因为AC=2,,OE=. 取MN的中点H,分别以直线,,为轴,轴,轴建立空间直角坐标系,
设,则点, ,,.设平面的法向量,
则,即 ,取,则,
同理求得平面的法向量.
因为是二面角 的平面角,则
,解得或.
由图可知a<OE=,故 (舍去),,
因为,,,
则.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,其左、右顶点分别为点,且点关于直线对称的点在直线上.
(1)求椭圆的方程;
(2)若点在椭圆上,点在圆上,且都在第一象限,轴,若直线与轴的交点分别为,判断是否为定值,若是定值,求出该定值;若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为正方形,平面,,,.
(Ⅰ)求证:平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)在棱上是否存在一点,使得平面平面?如果存在,求的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点在的延长线上,且,点的轨迹为.
(1)求直线及曲线的极坐标方程;
(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是一个直角梯形,其中,,平面,,,点M和点N分别为和的中点.
(1)证明:直线平面;
(2)求直线和平面所成角的余弦值;
(3)求二面角的正弦值;
(4)求点P到平面的距离;
(5)设点N在平面内的射影为点H,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com