精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是一个直角梯形,其中平面,点M和点N分别为的中点.

1)证明:直线平面

2)求直线和平面所成角的余弦值;

3)求二面角的正弦值;

4)求点P到平面的距离;

5)设点N在平面内的射影为点H,求线段的长.

【答案】1)证明见解析;(2;(3;(4;(5

【解析】

1)以为原点,建立空间直角坐标系,利用向量法,证明与平面的法向量垂直,从而证明直线平面

2)求出平面的法向量,利用向量法,求出直线和平面所成角的余弦值.

3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值.

4)求出的坐标,再求出平面的法向量,利用向量法,求出点到平面的距离;

5)设点在平面内的射影为点,从而表示出的坐标,求出到平面的距离,列出方程组,求出点坐标,从而求出的长度.

1)四棱锥,底面是一个直角梯形,平面

所以为原点,轴,轴,轴,建立空间直角坐标系,

设平面的法向量

所以

,则

所以平面

所以直线平面.

2

设平面的法向量

,即

,则

设直线与平面所成的角为

所以

所以直线与平面所成角的余弦值为.

3)设平面的法向量为

,即

,得

平面的法向量

设二面角的平面角为

所以

所以二面角的正弦值为.

4,平面的法向量

所以点到平面的距离为

.

5)设点在平面的射影为点

所以点到平面的距离为

根据,得

解得,或者(舍)

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,且平面,点是线段上任意一点.

(1)证明:平面平面

(2)若的最大值是,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,记

1)若,求的值;

2)在锐角中,角的对边分别是,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+x-6y+m=0与直线lx+2y-3=0

1)若直线l与圆C没有公共点,求m的取值范围;

2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①越小,XY有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;“若,则类比推出,“若,则;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)已知在区间上单调递减,在区间上单调递增,求实数的取值范围.

2)若对任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某新上市的电子产品举行为期一个星期(7天)的促销活动,规定购买该电子产品可免费赠送礼品一份,随着促销活动的有效开展,第五天工作人员对前五天中参加活动的人数进行统计,表示第天参加该活动的人数,得到统计表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)预测该星期最后一天参加该活动的人数(按四舍五入取到整数).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若过点P1,t)存在3条直线与曲线相切,求t的取值范围__________

查看答案和解析>>

同步练习册答案