精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,其左、右顶点分别为点,且点关于直线对称的点在直线上.

(1)求椭圆的方程;

(2)若点在椭圆上,点在圆上,且都在第一象限,轴,若直线轴的交点分别为,判断是否为定值,若是定值,求出该定值;若不是定值,说明理由.

【答案】(1);(2)1.

【解析】

(1)点关于直线对称的点在直线上,代入可求出,又,可解出,然后得出椭圆方程;(2)设,求出点的坐标,联立直线与椭圆方程,由韦达定理求出坐标,从而得到的方程,求出点的坐标,设,求出化简得,所以为定值.

解:(1)点关于直线对称的点在直线上,

,解得.

,解得.

∴椭圆E的方程为:.

(2)设

,解得,∴.

联立,化简得:.

,解得.

,即.

∴直线的斜率=.

的方程:,令,解得,∴.

,则.

.

,∴,即.

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:

(Ⅰ)求这件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.

(i)利用该正态分布,求

(ii)已知每件该产品的生产成本为元,每件合格品(质量指标值)的定价为元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户元。若该公司卖出件这种产品,记表示这件产品的利润,求.

附:.若,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.

1)求从A,B,C三个行政区中分别抽取的社区个数;

2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第行,第列的数记为,比如,若,则( )

A. 72B. 71C. 66D. 65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值,用样本估计总体.

(1)将直径小于等于或直径大于的零件认为是次品,从设备的生产流水线上随意抽取3个零件,计算其中次品个数的数学期望

(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点的动圆是与圆相内切.

(1)求动圆圆心的轨迹方程;

(2)设动圆圆心的轨迹为曲线是曲线上的两点,线段的垂直平分线过点,求面积的最大值(是坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,且平面,点是线段上任意一点.

(1)证明:平面平面

(2)若的最大值是,求三棱锥的体积.

查看答案和解析>>

同步练习册答案