【题目】从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:
(Ⅰ)求这件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.
(i)利用该正态分布,求;
(ii)已知每件该产品的生产成本为元,每件合格品(质量指标值)的定价为元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户元。若该公司卖出件这种产品,记表示这件产品的利润,求.
附:.若,则 .
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知椭圆 C:=1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PA交y轴于点C,PB交x轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教研部门对本地区甲、乙、丙三所学校高三年级进行教学质量抽样调查,甲、乙、丙三所学校高三年级班级数量(单位:个)如下表所示。研究人员用分层抽样的方法从这三所学校中共抽取6个班级进行调查.
学校 | 甲 | 乙 | 丙 |
数量 | 4 | 12 | 8 |
(1)求这6个班级中来自甲、乙、丙三所学校的数量;
(2)若在这6个班级中随机抽取2个班级做进一步调查,
①列举出所有可能的抽取结果;
②求这2个班级来自同一个学校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长为,宽为的矩形纸片中,为边的中点,将沿直线翻转(平面),若为线段的中点,则在翻转过程中,下列说法错误的是( )
A. 平面
B. 异面直线与所成角是定值
C. 三棱锥体积的最大值是
D. 一定存在某个位置,使
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:
安全出口编号 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客时间(s) | 120 | 220 | 160 | 140 | 200 |
则疏散乘客最快的一个安全出口的编号是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且长轴长是短轴长的2倍.
(1)求椭圆的标准方程;
(2)若点在椭圆上运动,点在圆上运动,且总有,求的取值范围;
(3)过点的动直线交椭圆于、两点,试问:在此坐标平面上是否存在一个点,使得无论如何转动,以为直径的圆恒过点?若存在,请求出点的坐标;若不存在,请说明由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的矩形ABCD中,AB=AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.
(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;
(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,其左、右顶点分别为点,且点关于直线对称的点在直线上.
(1)求椭圆的方程;
(2)若点在椭圆上,点在圆上,且都在第一象限,轴,若直线与轴的交点分别为,判断是否为定值,若是定值,求出该定值;若不是定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com