精英家教网 > 高中数学 > 题目详情
1.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则k=2.

分析 先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可

解答 解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);
由导数的几何意义可得k=$\frac{1}{{x}_{1}}$=$\frac{1}{{x}_{2}+1}$,得x1=x2+1
再由切点也在各自的曲线上,可得kx1+b=lnx1+2,kx2+b=ln(x2+1)
联立上述式子解得k=2,
故答案为2.

点评 本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点,点N在线段AD上.
(I)点N为线段AD的中点时,求证:直线PA∥BMN;
(II)若直线MN与平面PBC所成角的正弦值为$\frac{4}{5}$,求平面PBC与平面BMN所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点(1,$\frac{3}{2}$),且离心率为$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过椭圆C上异于其顶点的任一点P,作⊙O:x2+y2=3的两条切线,切点分别为M,N,且直线MN在x轴,y轴上截距分别为m,n,证明:$\frac{1}{4{m}^{2}}$+$\frac{1}{3{n}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C:y=$\frac{1}{8}$x2的焦点为F,定点A(-1,0),若射线FA与抛物线C交于点M,与抛物线C的准线交于点N,则|MN|:|FN|的值是(  )
A.$\sqrt{5}$:(2+$\sqrt{5}$)B.2:(2+$\sqrt{5}$)C.1:(1+$\sqrt{5}$)D.$\sqrt{5}$:(1+$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式;
(2)求数列{an+1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行下面的程序框图,若p=10,则输出的S等于(  )
A.$\frac{1023}{1024}$B.$\frac{1025}{1024}$C.$\frac{2047}{2048}$D.$\frac{2049}{2048}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若k∈R,则“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{S_n}+1,n∈{N^*}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,设数列{bn}的前n项和为Tn,若?n∈N*,不等式Tn-na<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线y=x相交于M,N两点,若在椭圆上存在点P,使得直线MP,NP斜率之积为-$\frac{4}{9}$,则椭圆离心率为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案