精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{S_n}+1,n∈{N^*}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,设数列{bn}的前n项和为Tn,若?n∈N*,不等式Tn-na<0恒成立,求实数a的取值范围.

分析 (Ⅰ)由${a_{n+1}}=2\sqrt{S_n}+1,n∈{N^+}$得${S_{n+1}}-{S_n}=2\sqrt{S_n}+1$,故${S_{n+1}}={({\sqrt{S_n}+1})^2}$,可得$\sqrt{{S}_{n+1}}$=$\sqrt{{S}_{n}}$+1,利用等差数列的通项公式与数列递推关系即可得出.
(II)利用“裂项求和”方法、数列的单调性即可得出.

解答 解:(Ⅰ)由${a_{n+1}}=2\sqrt{S_n}+1,n∈{N^+}$得${S_{n+1}}-{S_n}=2\sqrt{S_n}+1$,故${S_{n+1}}={({\sqrt{S_n}+1})^2}$,
∵an>0,∴Sn>0,∴$\sqrt{{S}_{n+1}}$=$\sqrt{{S}_{n}}$+1,(2分)
∴数列$\left\{{\sqrt{S_n}}\right\}$是首项为$\sqrt{S_1}=1$,公差为1的等差数列.(3分)
∴$\sqrt{S_n}=1+({n-1})=n$,∴${S_n}={n^2}$,…(4分)
当n≥2时,${a_n}={S_n}-{S_{n-1}}={n^2}-{({n-1})^2}=2n-1$,a1=1,…(5分)
又a1=1适合上式,∴an=2n-1.…(6分)
(Ⅱ)将an=2n-1代入${b_n}=\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,${b_n}=\frac{{4{n^2}}}{{({2n-1})({2n+1})}}=\frac{{4{n^2}}}{{4{n^2}-1}}=1+\frac{1}{{({2n-1})({2n+1})}}=1+\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$…(7分)
∴${T_n}=n+\frac{1}{2}({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})=n+\frac{n}{2n+1}$…(9分)
∵Tn-na<0,∴$n+\frac{n}{2n+1}-na<0$,
∵n∈N+,∴$1+\frac{1}{2n+1}-a<0$…(10分)∴$a>1+\frac{1}{2n+1}$,
∵2n+1≥3,$0<\frac{1}{2n+1}≤\frac{1}{3}$,$1<1+\frac{1}{2n+1}$$≤\frac{4}{3}$,∴$a>\frac{4}{3}$.(12分)

点评 本题考查了“裂项求和”、等差数列通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若$0<x<\sqrt{3}$,则y=x$\sqrt{3-{x^2}}$的最大值是(  )
A.$\frac{9}{16}$B.$\frac{9}{4}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆C的焦点F1、F2在x轴上,离心率为$\frac{1}{2}$,过F1作直线l交C于A、B两点,△F2AB的周长为8,则C的标准方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{12}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{2}+{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}}\right.$,则z=x-2y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从原点向圆x2+y2-12x+27=0作两条切线,则这两条切线的夹角的大小为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以点(5,4)为圆心且与x轴相切的圆的方程是(  )
A.(x-5)2+(y-4)2=16B.(x+5)2+(y-4)2=16C.(x-5)2+(y-4)2=25D.(x+5)2+(y-4)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则k=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值为-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求证:f(ab)>|a|f($\frac{b}{a}$).

查看答案和解析>>

同步练习册答案